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ERROR ANALYSIS OF QR UPDATING 
WITH EXPONENTIAL WINDOWING 

G. W. STEWART 

ABSTRACT. Exponential windowing is a widely used technique for suppressing 
the effects of old data as new data is added to a matrix. Specifically, given an 
n x p matrix Xn and a "forgetting factor" ft e (0, 1), one works with the 
matrix diag(ftn-I, fin-2, ..1, )Xn . In this paper we examine an updating 
algorithm for computing the QR factorization of diag(f,n-I, fn -2. . .,1 )Xn 
and show that it is unconditionally stable in the presence of rounding errors. 

1. INTRODUCTION 

In many applications (e.g., signal processing, time series) one needs the QR 
factorization of an n x p matrix 

/xH 

Xn = XF 

The rows of Xn represent data that arrives at regular intervals, with xH the 
oldest data and xnH the most recent. 

If the series xH is not stationary, it is necessary to suppress the older data 
so that they do not contaminate more recent information. One widely used 
method for accomplishing this is called exponential windowing. Let ,8 E (0, 1) 
be a "forgetting factor," and let 

Dn = diag(fin-I, fn-2 1) 

Instead of computing the QR factorization of Xn, one computes the QR fac- 
torization of DnXn; i.e., one computes 

(1.1) DnXn = QnRn , 

where Qn has orthonormal columns and Rn is upper triangular. The effect of 
exponential windowing is to weight xi' by fin-i, so that it has less and less 
influence as n increases. 
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As a rule, only the R-factor Rn in (1.1) is needed in applications. It can be 
computed efficiently by the following updating procedure. Let Ro = 0. Given 
Rn, compute the QR decomposition 

(1.2) (WH n XH) (fn) (R??) 

Here, 

(1.3) (Un vn) 

is unitary and Rn+1 is upper triangular. It is easily seen that the -sequence 
of triangular matrices Rn so generated are the R-factors of the matrices Xn . 
The details of this updating algorithm may be found in [1, ? 12.6.3]. It requires 
0(p2) arithmetic operations. 

Exponential windowing and updating allows us to look at the local behavior 
of an arbitrarily long sequence of data. However, the fact that n is effectively 
unbounded raises the possibility that rounding error will accumulate to the point 
where it overwhelms the data. The purpose of this paper is to show that this 
does not happen: exponential windowing damps old rounding errors along with 
old data. 

In the next section we will present the rounding error analysis. Although 
the results of this analysis are sufficient for practical purposes, it is clear that 
the bounds are an overestimate, at least asymptotically. Consequently, ?3 is 
devoted to producing refined bounds. 

Throughout this paper, IIXHI will denote the Frobenius norm defined by 

JIA 12 =E laija12. 
i,j 

All computations will be assumed to be in floating-point arithmetic with round- 
ing unit cM; i.e., - log EM is approximately the number of decimal digits carried 
in the computation. 

2. THE ERROR ANALYSIS 

Our error analysis will be a classical backward error analysis; that is, we will 
show that the computed Rn whatever its accuracy, comes from very slightly 
perturbed data. The analysis begins with a backward error analysis of the single 
update step (1.2). 

Theorem 2.1. Let Rn+1 denote the result of performing the update (1.2) in 
floating-point arithmetic with rounding unit cM. Then there is a unitary matrix 
of the form (1.3), a constant K depending on p, a matrix G, and a vector hH 
satisfying 

(2.1) ( ) < KeM (X )8R 

such that 

(Un v~ n f8Rn ?Gn n 
(2.2) WH Xn XH + hH = 

A proof of this theorem may be found in [4, Chapter 3, ??20-24]. 
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The analysis of the updating algorithm with exponential windowing amounts 
to the recursive application of the bound (2.2). As is typical in backward 
rounding-error analyses, we let quantities stand for their computed values. The 
results will be cast in terms of the augmented factorization 

(DnXn) = (Qn)R 

This factorization reflects the actual updating process in which we start with a 
zero matrix, imagined to lie above Xn, and form Rn in it. 

Theorem 2.2. Let IIRnII < p, n = 1, 2, ... , so that p is an upper bound for 
the norms of the computed Rn. Then there exist a matrix 

(2.3) (n) 

with orthonormal columns and matrices En and Fn satisfying 

(2.4) (En) K eMp 

such that 

(DnXn+ Fn= (Qn)R. 
Proof. The proof is by induction. The theorem is clearly true for n = 0 (take 
Po = I and Ro = 0). 

Now suppose that the theorem is true for some n > 0, and suppose that Rn 
has been updated so that (2.2) holds. Then from (2.1) and (2.2) we have that 

|(8Rn < IIRn+1 II + Gn < p + Km| (AHRn 

Hence, 

(2.5) (8Rn <) - 

Now consider the equations 
( f3En ?PnGn P,n 0 \( fRn?Gn' 
(DnX + Pn) + QnGn Q) ? hH) 

xQ' ? )( H X )(WhH 0 1) / n+1 + hH) 

Pn 0n HnW 
=~~~~ H UH H wX ( nhH) 

0 1 n wn)(n Vn fnR ?G 

Pn(UnH Pnwnl (Rn?i) 

They suggest that we should take 

Pn+1 = Pn Un Qn?1 = H 

(2.6) En+1 = En + PnGn= Fn +Qn Gn 
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In fact, all we need do is verify that En+1 and Fn+1 so defined satisfy the bound 
(2.4). From (2.6) and the fact that (2.3) has orthonormal columns, we have 

(n) ?< (En) + G 
| Fn+l ) ||<3|Fn ) |+| hHn)1 

Hence, from the induction hypothesis (2.4) and from (2.1) and (2.5), 

||rEn+1 8||< IKMP KEMP _ KEMP 

VFn+1 J (1-,B)(1-KCM) 1-KeM (1--8)(1--KeM)' 
which establishes the theorem. O 

One unsatisfactory aspect of this theorem is that it is phrased in terms of an 
upper bound on the computed R-factor. This leaves open the possibility that 
Rn could grow unboundedly, even though the true factors remain bounded. 
The following corollary shows that this cannot happen. 

Corollary 2.3. Let 
KeM 

C (1 - f)(1 - KCM)' 

and let p be an upper bound on the norms of the true R-factors. Then p < 
p/(l - C),- 
Proof. Since Rn is obtained from DnXn by a unitary transformation, IlDnXn 11 
< p. From Theorem 2.2, it follows that p < p + rp, from which the corollary 
follows immediately. n 

There are three comments to make about this theorem. First, the bound says 
that the combined effect of all the operations is the same as if we had introduced 
a relative perturbation in DnXn of approximately norm - Kem/( 1 - ,8). For 
example, if ,B = 0.5, the effect of all the updates is only twice the effect of a 
single update whatever the value of n. Thus, there is never a need to restart 
the computation to get rid of accumulated rounding errors. 

Second, we have focused on the QR factorization for the sake of simplicity. 
However, the analysis applies mutatis mutandis to more complicated decom- 
position such as the URV and ULV decomposition [2, 3], in which unitary 
transformations are applied to both sides of DnXn . The key is to observe that 
the updating algorithms have backward error analyses in the spirit of Theorem 
2.1. Unfortunately, it is usually required to accumulate the right-side transfor- 
mation, and here error can accumulate, albeit very slowly. 

Finally, as we mentioned in the introduction, the bounds are likely to over- 
estimate the error in the long run. The errors do not spread evenly over DnXn 5 
as the bound seems to imply, but tend to decrease exponentially along with the 
rows of DnXn . We will now proceed to analyze this phenomenon. 

3. EXPONENTIAL DECAY OF THE ERROR 

The reason for the weakness of the bounds derived in the last section is that 
we have ignored the structure of Qn in passing from the recurrence 

F (I3Fn+QnGn) Fn+1 hH J 

to a bound on the backward error. It turns out that the rows of Qn can decrease 
exponentially at approximately the same rate as the rows of DnXn . When this 
fact is taken into account, we obtain a more realistic bound for the old data. 
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Theorem 3.1. Let 4 > lix411 be an upper bound on the norms of the x4' and 
let p(-l) > (IR-' l, i = p, p + 1,..., be an upper bound on the norms of the 
inverses of the computed Ri. Let 

K =PP(-1) 'T I= - KKM 3= , + KT. 

Then, if fiH denotes the backward error in the ith row of DnXn, 

lf.H1 <fn-i,(p + (n-i)K4), i = p, p + 1,..., n= i, +1.... 
Proof. Let q H denote the ith row of Qn. Then 

f n-iX'H + fiH = qHRn 

Hence, 

(3.1) llq"in < pin)(fli + 11fi). 

Now from (2.6), 

(3.2) i hi 

Jin?1 = l8fiHn + qHGn, n = i, i+1. 

Hence, from the bound on lIGn l developed in the proof of Theorem 2.2 and 
(3.1) we have 

ilfHii ?1 rp , l 

i, 

11 
' 

tllf 

IJ?n+iII <flTi ?l+ 'Kr4, n = , i +1. 

Hence, if we set 

6Oii = TP , 

(Oi,n+l = 9(0,n +/8n- 'KTr , n = i i + 1, 5 . 

then lifiHn 11 < SOin . But it is easily verified that 

pOin = f nir(p + (n - i)K4). O 

The proof of the theorem must be modified for the case i < p, since in 
this case Ri is singular. The key is to use the bound from Theorem 2.2 as an 
initial condition for the recursion (3.3). The resulting bound exhibits the same 
exponential decay. 

The number K iS an upper bound on the condition of the Rn, and if some 
of the Rn are very ill-conditioned, the bounds will be large. However, note that 
even in applications in which rank-degenerate Rn are expected (e.g., direction 
of arrival estimation), the presence of noise in the data is likely to make the 
ill-conditioning very mild compared with the rounding unit. 

Finally, note that because of the presence of the term (n - i)K , the bounds 
of this section are initially weaker than the bounds of the preceding section. 
However, as n increases these bounds ultimately become sharper, since they 
track the decreasing error while the bounds of the preceding section remain 
constant. 
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